
Lecture 10:
Transformer & LLM Accelerators

2

Notes
● Midterm grade will post tonight
● Meeting with the project teams next week

3

Recap
● Convolutional operation conversion
● Hardware architecture of CNN accelerator
● Systolic array
● Popular CNN accelerator design

○ SpAtten
○ EdgeBert
○ Olive

4

Topics
● Matrix Multiplication with Transposition
● Hardware design for Nonlinear Blocks
● System optimization of LLMs
● Popular transformer accelerator design

○ SpAtten
○ EdgeBert
○ Olive

5

Self-Attention Block

linear linear linear

Reshape Reshape Reshape

Q K V
QKT

x
Reshape

linear

Softmax

Scale

+

Layernorm

Y

X

● Given input x, the first step in calculating self-attention is to create
three vectors from each of the input x’, denoted as: Query (Q), Key
(K), Value (V).

○ (B,L,E) ✖ (E✖E) → (B✖L✖E)
● The second step in calculating self-attention. This will compute the

attention score between each pair of input tokens.
○ QK丅→(B, L✖E) ✖ (B,E✖L) → (B, L✖L)

● Scale and normalize the score using softmax.
○ Softmax(QK丅) → (B, L✖L)

● Multiply each value vector by the softmax score.
○ Softmax(QK丅) ✖ V
○ (B, L✖L) ✖ (B, L✖E) → (B, L✖E)

● Pass the result to the linear layer, sum with the input.

6

Operations Other than Multiplications
● Transposition
● Nonlinear operations

○ Softmax
○ LayerNorm
○ GeLU

7

Breakdown on Computational Cost

Latency Breakdown

14.9%

Matmul

13
.4
%

14.5%

Normalization OthersSoftmax

57.2%

16.1% 13
.9
%

17.8%

52.2%

GPT2 OPT

● Matmul still contributes to majority
of the overall latency.

● Nonlinear operations are not
negligible.

● Also other operations (e.g.,
transposition) also contributes to a
great portion of the overall latency.

8

Matrix Multiplication

A B✕ ✕51
2

256

256

A B

128

12
8

128

12
8

A00

B00

● The large matrix operands are first partitioned into tiles that can fit the
size of the compute core.

256

9

Matrix Multiplication

● The large matrix operands are partitioned into tiles that match the compute core's
capacity, after which multiplication and accumulation are executed on a per-tile basis.

● However, sometimes the transposition operations are also required → QKT

Systolic
Array

A00

Y00

A
ccum

ulator

Systolic
Array Y00

A
ccum

ulator

B00 A01 B10

Y00

10

In-Place Matrix Transposition
● In-place matrix transposition refers to the process of transposing a matrix directly within

its existing memory space, requiring only a minimal amount of extra storage.

a b c d
e f g h a b c d e f g h

a e
b f
c g
d h

a e b f c g d h

memory

memory

11

In-Place Matrix Transposition

memory

memoryLogics
read

write

(b,c,e) → (e,b,c)
(d,f,g) → (f,g,d)

● Need to read multiple entries from
the memory, permute them and
write them back.

● This operation should be performed
efficiently with minimal memory
access cost.

a b c d e f g h

a e b f c g d h

12

In-Place Matrix Transposition

a b c d e f g h a b c d e f g h

a e b f c g d h a e b f c g d h

Step 1 Step 2

● The search for optimal swapping patterns that minimize permutations is a
well-established problem in mathematics.

Norman Brenner, "Algorithm 467: matrix transposition in place," ACM Transactions on Mathematical
Software 16 (11), p. 692-694 (1973). doi:10.1145/355611.362542

13

Topics
● Matrix Multiplication with Transposition
● Hardware design for Nonlinear Blocks
● System optimization of LLMs
● Popular transformer accelerator design

○ SpAtten
○ EdgeBert
○ Olive

14

Implementation of Nonlinear Operations: Softmax

● Softmax operations are heavily adopted in the transformer.

● For positive z with INT representation, we can approximate the values
of ez using the following derivations:

● To compute 2u+v, we can perform shift and multiplication:
u and v are the integer and fractional part of the
exponent, v/2 is the mantissa, u is the exponent

15

Taylor Approximation
● A Taylor series is a series expansion of a function about a point. A

one-dimensional Taylor series is an expansion of a real function f(x)
about a point x=a is given by:

● For small v, ev can be approximated as:

Xia, Tianhua, and Sai Qian Zhang. "Softmax Acceleration with Adaptive Numeric Format for both Training and Inference."
arXiv preprint arXiv:2311.13290 (2023).

ev 2v

16

Taylor Approximation
● A Taylor series is a series expansion of a function about a point. A

one-dimensional Taylor series is an expansion of a real function f(x)
about a point x=a is given by:

● For small v, ev can be approximated as:

Xia, Tianhua, and Sai Qian Zhang. "Softmax Acceleration with Adaptive Numeric Format for both Training and Inference."
arXiv preprint arXiv:2311.13290 (2023).

ev 2v

17

Division
● To implement division operation with FP format, we can always apply

the following derivations:

● For INT division, we can also
implement the hardware divisor.

18

Implementation of Nonlinear Operations:
LayerNorm

● For the input vector z, the normalization operation requires to
computes its mean and variance, then the intermediate results are
scaled with some predefined values.

● Most of the operations are supported, the inverse of square root can be
computed as follows:

19

Implementation of Nonlinear Operations:
LayerNorm

● Most of the operations are supported, the inverse of square root can be
computed as follows:

● Q is the bias, Ex and Mx are the binary representations of the
exponent and mantissa, respectively.

20

Table Lookup
● For other complicated nonlinear functions, we can always precompute

the results and store them in the buffer.

● However, this will inevitably lead to additional memory access cost and
footprint.

2
3

1
0

Memory

0.123
0.456
0.789
0.119

y = F(x)

21

HAAN: LayerNorm Accelerator

Peng, Tianfan, et al. "HAAN: A Holistic Approach for Accelerating Normalization Operations in Large Language Models."
arXiv preprint arXiv:2502.11832 (2025).

linearity

LLM block index

IS
D

 in
 lo

g
sc

al
e From layer 41-61

● Exploit correlation in input statistics across layers.
● Skip redundant computations and estimate normalization statistics.

Computing the inverse of
standard deviation of costly

Layer Normalization:

22

HAAN: LayerNorm Accelerator

● Exploit correlation in input statistics across layers.
● Skip redundant computations and estimate normalization statistics.

Computing the inverse of
standard deviation of costly

Layer Normalization:

bl
oc

k
1

Log-linear
Predictor

…

ISDs

ISDs
estimation

LL
M

 b
lo

ck bl
oc

k
2

bl
oc

k
3

bl
oc

k
4

bl
oc

k
5

bl
oc

k
6

23

HAAN: LayerNorm Accelerator
● Overall Architecture

○ Input Statistics Calculator.

○ Square Root Inverter.

○ Normalization Unit.

● Input Statistics Calculator

○ Compute mean and variance.

○ Parallel processing to reduce latency.

● Square Root Inverter

○ Approximate inverse square root

using Newton's method.

○ Support for layer skipping.

24

PICACHU

Qin, Jiajun, et al. "PICACHU: Plug-In CGRA Handling Upcoming Nonlinear Operations in LLMs." Proceedings of the 30th
ACM International Conference on Architectural Support for Programming Languages and Operating Systems, Volume 2.
2025.

● PICACHU is a plug-in coarse-grained reconfigurable accelerator tailored to efficiently
handle nonlinear operations by using custom algorithms and a dedicated compiler
toolchain.

25

PICACHU

Qin, Jiajun, et al. "PICACHU: Plug-In CGRA Handling Upcoming Nonlinear Operations in LLMs." Proceedings of the 30th ACM
International Conference on Architectural Support for Programming Languages and Operating Systems, Volume 2. 2025.

● All nonlinear operations within LLM can be broken down into various mathematical operators.

26

Topics
● Matrix Multiplication
● Hardware design for Nonlinear Blocks
● System optimization of LLMs
● Popular transformer accelerator design

○ SpAtten
○ EdgeBert
○ Olive

27

Flashattention

Dao, Tri, et al. "Flashattention: Fast and memory-efficient exact attention with io-awareness." Advances in Neural Information
Processing Systems 35 (2022): 16344-16359.

● Most of the operations are bottlenecked by
memory speed.

● A new attention algorithm that computes exact
attention with far fewer memory accesses.

● The main goal is to avoid reading and writing the
attention matrix to and from memory.

● Flashattention enables to compute the softmax
reduction without access to the whole input.

7.6x reduction on GPU latency

28

Flashattention
● Due to the heavy involvement of attention

mechanism, transformers are
memory-bound rather than compute
bound.

● Kernel fusion: if there are multiple
operations applied to the same input, the
input can be loaded once from HBM,
instead of multiple times for each
operation.

29

Flashattention

MemCompute
Core

Round 1
Step 1

Step 3
Step 2

MemCompute
Core

Round 2
Step 4

Step 6
Step 5

MemCompute
Core

Step 1

Step 2
MemCompute

Core
Step 3 Step 4

Round 1 Round 2

Y = S(QKT)✖V

30

Flashattention

MemCompute
Core

Round 1

MemCompute
Core

Round 2

Q,K

QKT

QKT

S(QKT)

MemCompute
Core

Round 3

Y

S(QKT), V

Y = S(QKT)✖V

● The computation of QKT must be all
finished before computing softmax.

● This will lead to multiple rounds of
memory access.

31

Flashattention

MemCompute
Core

Round 1

Q1,K1

Q1K1T

Y = S(QKT)✖V

● In practice, this operation will be executed in tiles.

MemCompute
Core

Q1,K2

Q1K2T
…

32

Flashattention

● Softmax and linear layers are computed separately.
● Flashattention splits the inputs Q, K, V into tiles, then compute the attention

output with respect to those blocks.

33

Flashattention
● Softmax operation can be performed as:

● We can fuse the softmax with the linear layer by doing follows:

34

Flashattention

MemCompute
Core

Round 1

Q1,K1,V1,Y1

S(QKT)✖V

Q1K1T

S(Q1K1T)
m,n,Y1

Update m,n
Y1=m✖Y1+n✖S(Q1K1T)✖V1

35

Flashattention

Compute
Core

Round 2

S(QKT)✖V

Q1K2T

S(Q1K2T)
Mem

Q1,K2,V2,Y2

Y2=m✖Y2+n✖S(Q1K2T)✖V2 m,n,Y2
Update m,n

36

Flashattention

37

Paged Attention

● An LLM serving system that achieves (1) near-zero waste in KV cache memory and (2)
flexible sharing of KV cache within and across requests to further reduce memory usage.

Kwon, Woosuk, et al. "Efficient memory management for large language model serving with paged attention." Proceedings
of the 29th Symposium on Operating Systems Principles. 2023.

38

Topics
● Matrix Multiplication
● Hardware design for Nonlinear Blocks
● System optimization of LLMs
● Popular transformer accelerator design

○ SpAtten
○ EdgeBert
○ Olive

39

SpAtten: Efficient Sparse Attention Architecture
with Cascade Token and Head Pruning

Wang, Hanrui, Zhekai Zhang, and Song Han. "Spatten: Efficient sparse attention architecture with cascade token and
head pruning." 2021 IEEE International Symposium on High-Performance Computer Architecture (HPCA). IEEE, 2021.

● Not all the tokens nor heads are
necessary to produce the final results.

● SpAtten is an efficient
algorithm-architecture co-design that
leverages token sparsity, head sparsity,
and quantization opportunities to reduce
the attention computation and memory
access.

40

Linear

Token Merging

Bolya, Daniel, et al. "Token merging: Your vit but faster." arXiv preprint arXiv:2210.09461 (2022).

“This show is great”

“This show is great”

Pooling layer will
reduce the number
of tokens.

● We can reduce the number of tokens by merging them together.

Feedforward
layer (FFN)

Block 2

...

Block 1

Block N

Self-attention
layer (SA)

Embedding

Positional
encoding

Tr
an

sf
or

m
er

 b
lo

ck

Pooling

41

SpAtten: Efficient Sparse Attention Architecture
with Cascade Token and Head Pruning

● Cascade token pruning removes redundant tokens and corresponding entire Q K V vectors
according to the cumulative token importance scores computed from attention prob.

● Cascade head pruning removes unimportant heads and corresponding chunks in all Q K V
vectors according to the cumulative head important scores computed from attention out.

42

SpAtten: Efficient Sparse Attention Architecture
with Cascade Token and Head Pruning

● For each input, the summation of each
columns indicates the importance of
this token, we can remove the
unimportant tokens accordingly.

● Similarly, we can compute the
importance of each heads.

43

SpAtten: Efficient Sparse Attention Architecture
with Cascade Token and Head Pruning

● This paper also proposed novel
architecture to perform top-k extraction
with high parallelism.

44

EdgeBert

Tambe, Thierry, et al. "Edgebert: Sentence-level energy optimizations for latency-aware multi-task nlp inference."
MICRO-54: 54th Annual IEEE/ACM International Symposium on Microarchitecture. 2021.

● EdgeBERT is a novel algorithm-hardware codesign approach to enable latency-bound NLP workloads on
resource-constrained embedded devices.

● EdgeBERT dynamically tunes frequency and voltage settings to optimize the trade-off between accuracy, latency,
and energy consumption.

45

Early Exit Mechanism
● EdgeBERT employs entropy-based early exit predication in order to perform dynamic

voltage-frequency scaling (DVFS), at a sentence granularity, for minimal energy consumption while
adhering to a prescribed target latency.

● During Inference, a confidence score is computed at each
exit point, if greater than a predefined threshold, then the
output is computed locally, leading to a faster inference.

● The confidence score is defined as:

Teerapittayanon, Surat, Bradley McDanel, and Hsiang-Tsung Kung. "Branchynet:
Fast inference via early exiting from deep neural networks." 2016 23rd
international conference on pattern recognition (ICPR). IEEE, 2016.

46

Other Tricks for Efficiency

● Pruning and Quantization techniques are also adopted.

47

Latency Aware Inference
● The entropy result of the first layer is sent to a trained

classifier (LUT-based) to predict which following
encoder layer should early exit.

● The voltage and frequency is scaled down to proper
energy-optimal setting for the rest of encoder layers
while meeting the latency target for each sentence.

● This scheme produces a quadratic reduction in the
accelerator power consumption.

● To realize fast per-sentence DVFS, the on-chip DVFS
system is developed and integrated within EdgeBERT

48

OliVe: Accelerating LLMs via Hardware-friendly
Outlier-Victim Pair Quantization

Guo, Cong, et al. "Olive: Accelerating large language models via hardware-friendly outlier-victim pair quantization."
Proceedings of the 50th Annual International Symposium on Computer Architecture. 2023.

● Recent studies show when the model size exceeds a threshold (e.g., 6 billion), the model
performance is vulnerable to only a tiny fraction (< 0.1%) of outliers, whose values are much
more significant than normal values.

● Olive adopts a hybrid quantization scheme and handles outlier values locally using a separate
quantization scheme.

49

Outlier within LLMs

Self-Attention

Feedforward
Network

✕2
4

C
LI

P

Radford, Alec, et al. "Learning transferable visual models from natural language supervision." International conference
on machine learning. PMLR, 2021.

50

Types of Outlier
● Massive Activation:

○ For an activation matrix A, an massive activation is an element Aij within it
that satisfies:

○ Aij > η✕mean(|A|)
○ Aij > γ
○ η=300, γ=50

● Channelwise Outlier:
○ mean(Ai) > η✕std(A) +mean(|A|)
○ std(Ai) < β
○ η=3, β=0.6

51

OliVe: Accelerating LLMs via Hardware-friendly
Outlier-Victim Pair Quantization

● In this work, we aim to design an
architecture to handle outliers in a
localized way with high hardware
efficiency. Post quantization training
is adopted.

● To better quantize the outlier, one
number near the outlier are
sacrificed and set to 0, then two set
of bits are used to encode the
outlier.

52

Presentations
● Efficient Memory Management for Large Language Model Serving with

PagedAttention (Xiwen Min & Ziyun Cheng)

● Cnvlutin: Ineffectual-Neuron-Free Deep Neural Network Computing (Jishnu
Warrier & Ishaan Shivhare)

https://docs.google.com/presentation/d/1M60sZjjV2_ZRfgCzO1ML6DUXHaVc2tMZpaQLyiQ0O98/edit?usp=sharing
https://docs.google.com/presentation/d/1M60sZjjV2_ZRfgCzO1ML6DUXHaVc2tMZpaQLyiQ0O98/edit?usp=sharing
https://docs.google.com/presentation/d/1z-mhZn8_CCxO2WKhGdbkZ7FzXj3-7SBt2kvhj_75tFM/edit?slide=id.g34c6fe205a6_0_198#slide=id.g34c6fe205a6_0_198

