
Lecture 10: 
Transformer & LLM Accelerators
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Notes
● Midterm grade will post tonight
● Meeting with the project teams next week
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Recap
● Convolutional operation conversion
● Hardware architecture of CNN accelerator
● Systolic array
● Popular CNN accelerator design

○ SpAtten
○ EdgeBert
○ Olive



4

Topics
● Matrix Multiplication with Transposition
● Hardware design for Nonlinear Blocks
● System optimization of LLMs 
● Popular transformer accelerator design

○ SpAtten
○ EdgeBert
○ Olive
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Self-Attention Block
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● Given input x, the first step in calculating self-attention is to create 
three vectors from each of the input x’, denoted as: Query (Q), Key 
(K), Value (V).

○ (B,L,E) ✖ (E✖E) →  (B✖L✖E) 
● The second step in calculating self-attention. This will compute the 

attention score between each pair of input tokens.
○ QK丅→(B, L✖E) ✖ (B,E✖L) →  (B, L✖L) 

● Scale and normalize the score using softmax.
○ Softmax(QK丅) →  (B, L✖L) 

● Multiply each value vector by the softmax score.
○ Softmax(QK丅) ✖ V 
○ (B, L✖L)  ✖ (B, L✖E) →  (B, L✖E) 

● Pass the result to the linear layer, sum with the input.
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Operations Other than Multiplications
● Transposition
● Nonlinear operations

○ Softmax
○ LayerNorm
○ GeLU
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Breakdown on Computational Cost

Latency Breakdown
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● Matmul still contributes to majority 
of the overall latency.

● Nonlinear operations are not 
negligible.

● Also other operations (e.g., 
transposition) also contributes to a 
great portion of the overall latency.
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Matrix Multiplication
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● The large matrix operands are first partitioned into tiles that can fit the 
size of the compute core.

256
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Matrix Multiplication

● The large matrix operands are partitioned into tiles that match the compute core's 
capacity, after which multiplication and accumulation are executed on a per-tile basis.

● However, sometimes the transposition operations are also required → QKT
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In-Place Matrix Transposition
● In-place matrix transposition refers to the process of transposing a matrix directly within 

its existing memory space, requiring only a minimal amount of extra storage.

a b c d
e f g h a b c d e f g h

a e 
b f
c g 
d h

a e b f c g d h

memory

memory
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In-Place Matrix Transposition

memory

memoryLogics
read

write

(b,c,e) → (e,b,c)
(d,f,g) → (f,g,d)

● Need to read multiple entries from 
the memory, permute them and 
write them back.

● This operation should be performed 
efficiently with minimal memory 
access cost.

a b c d e f g h

a e b f c g d h
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In-Place Matrix Transposition

a b c d e f g h a b c d e f g h

a e b f c g d h a e b f c g d h

Step 1 Step 2

● The search for optimal swapping patterns that minimize permutations is a 
well-established problem in mathematics.

Norman Brenner, "Algorithm 467: matrix transposition in place," ACM Transactions on Mathematical 
Software 16 (11), p. 692-694 (1973). doi:10.1145/355611.362542
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Topics
● Matrix Multiplication with Transposition
● Hardware design for Nonlinear Blocks
● System optimization of LLMs 
● Popular transformer accelerator design

○ SpAtten
○ EdgeBert
○ Olive
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Implementation of Nonlinear Operations: Softmax

● Softmax operations are heavily adopted in the transformer.

● For positive z with INT representation, we can approximate the values 
of ez using the following derivations:

● To compute 2u+v, we can perform shift and multiplication:
u and v are the integer and fractional part of the 
exponent, v/2 is the mantissa, u is the exponent
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Taylor Approximation
● A Taylor series is a series expansion of a function about a point. A 

one-dimensional Taylor series is an expansion of a real function f(x) 
about a point x=a is given by:

● For small v, ev can be approximated as:

Xia, Tianhua, and Sai Qian Zhang. "Softmax Acceleration with Adaptive Numeric Format for both Training and Inference." 
arXiv preprint arXiv:2311.13290 (2023).

ev 2v
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Taylor Approximation
● A Taylor series is a series expansion of a function about a point. A 

one-dimensional Taylor series is an expansion of a real function f(x) 
about a point x=a is given by:

● For small v, ev can be approximated as:
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ev 2v
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Division
● To implement division operation with FP format, we can always apply 

the following derivations:

● For INT division, we can also 
implement the hardware divisor.
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Implementation of Nonlinear Operations: 
LayerNorm

● For the input vector z, the normalization operation requires to 
computes its mean and variance, then the intermediate results are 
scaled with some predefined values.

● Most of the operations are supported, the inverse of square root can be 
computed as follows:
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Implementation of Nonlinear Operations: 
LayerNorm

● Most of the operations are supported, the inverse of square root can be 
computed as follows:

● Q is the bias, Ex and Mx are the binary representations of the 
exponent and mantissa, respectively.
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Table Lookup
● For other complicated nonlinear functions, we can always precompute 

the results and store them in the buffer.

● However, this will inevitably lead to additional memory access cost and 
footprint.

2
3

1
0

Memory

0.123
0.456
0.789
0.119

y = F(x)
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HAAN: LayerNorm Accelerator

Peng, Tianfan, et al. "HAAN: A Holistic Approach for Accelerating Normalization Operations in Large Language Models." 
arXiv preprint arXiv:2502.11832 (2025).

linearity
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● Exploit correlation in input statistics across layers.
● Skip redundant computations and estimate normalization statistics.

Computing the inverse of 
standard deviation of costly

Layer Normalization: 
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HAAN: LayerNorm Accelerator

● Exploit correlation in input statistics across layers.
● Skip redundant computations and estimate normalization statistics.

Computing the inverse of 
standard deviation of costly

Layer Normalization: 
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HAAN: LayerNorm Accelerator
● Overall Architecture

○ Input Statistics Calculator.

○ Square Root Inverter.

○ Normalization Unit.

● Input Statistics Calculator

○ Compute mean and variance.

○ Parallel processing to reduce latency.

● Square Root Inverter

○ Approximate inverse square root 

using Newton's method.

○ Support for layer skipping.
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PICACHU

Qin, Jiajun, et al. "PICACHU: Plug-In CGRA Handling Upcoming Nonlinear Operations in LLMs." Proceedings of the 30th 
ACM International Conference on Architectural Support for Programming Languages and Operating Systems, Volume 2. 
2025.

● PICACHU is a plug-in coarse-grained reconfigurable accelerator tailored to efficiently 
handle nonlinear operations by using custom algorithms and a dedicated compiler 
toolchain.
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PICACHU

Qin, Jiajun, et al. "PICACHU: Plug-In CGRA Handling Upcoming Nonlinear Operations in LLMs." Proceedings of the 30th ACM 
International Conference on Architectural Support for Programming Languages and Operating Systems, Volume 2. 2025.

● All nonlinear operations within LLM can be broken down into various mathematical operators.
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Topics
● Matrix Multiplication
● Hardware design for Nonlinear Blocks
● System optimization of LLMs 
● Popular transformer accelerator design

○ SpAtten
○ EdgeBert
○ Olive
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Flashattention

Dao, Tri, et al. "Flashattention: Fast and memory-efficient exact attention with io-awareness." Advances in Neural Information 
Processing Systems 35 (2022): 16344-16359.

● Most of the operations are bottlenecked by 
memory speed.

● A new attention algorithm that computes exact 
attention with far fewer memory accesses.

● The main goal is to avoid reading and writing the 
attention matrix to and from memory. 

● Flashattention enables to compute the softmax 
reduction without access to the whole input.

7.6x reduction on GPU latency
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Flashattention
● Due to the heavy involvement of attention 

mechanism, transformers are 
memory-bound rather than compute 
bound.

● Kernel fusion: if there are multiple 
operations applied to the same input, the 
input can be loaded once from HBM, 
instead of multiple times for each 
operation.
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Flashattention

MemCompute 
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Y = S(QKT)✖V
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Flashattention

MemCompute 
Core

Round 1

MemCompute 
Core

Round 2

Q,K

QKT

QKT

S(QKT)

MemCompute 
Core

Round 3

Y

S(QKT), V

Y = S(QKT)✖V

● The computation of QKT must be all 
finished before computing softmax.

● This will lead to multiple rounds of 
memory access.
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Flashattention

MemCompute 
Core

Round 1

Q1,K1

Q1K1T

Y = S(QKT)✖V

● In practice, this operation will be executed in tiles.

MemCompute 
Core

Q1,K2

Q1K2T
…
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Flashattention

● Softmax and linear layers are computed separately.
● Flashattention splits the inputs Q, K, V into tiles, then compute the attention 

output with respect to those blocks. 
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Flashattention
● Softmax operation can be performed as:

● We can fuse the softmax with the linear layer by doing follows:
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Flashattention

MemCompute 
Core

Round 1

Q1,K1,V1,Y1

S(QKT)✖V

Q1K1T

S(Q1K1T)
m,n,Y1

Update m,n
Y1=m✖Y1+n✖S(Q1K1T)✖V1



35

Flashattention

Compute 
Core

Round 2
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Y2=m✖Y2+n✖S(Q1K2T)✖V2 m,n,Y2
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Flashattention
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Paged Attention

● An LLM serving system that achieves (1) near-zero waste in KV cache memory and (2) 
flexible sharing of KV cache within and across requests to further reduce memory usage.

Kwon, Woosuk, et al. "Efficient memory management for large language model serving with paged attention." Proceedings 
of the 29th Symposium on Operating Systems Principles. 2023.
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Topics
● Matrix Multiplication
● Hardware design for Nonlinear Blocks
● System optimization of LLMs 
● Popular transformer accelerator design

○ SpAtten
○ EdgeBert
○ Olive
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SpAtten: Efficient Sparse Attention Architecture 
with Cascade Token and Head Pruning

Wang, Hanrui, Zhekai Zhang, and Song Han. "Spatten: Efficient sparse attention architecture with cascade token and 
head pruning." 2021 IEEE International Symposium on High-Performance Computer Architecture (HPCA). IEEE, 2021.

● Not all the tokens nor heads are 
necessary to produce the final results.

● SpAtten is an efficient 
algorithm-architecture co-design that 
leverages token sparsity, head sparsity, 
and quantization opportunities to reduce 
the attention computation and memory 
access.
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Linear

Token Merging

Bolya, Daniel, et al. "Token merging: Your vit but faster." arXiv preprint arXiv:2210.09461 (2022).

“This show is great”

“This show is great”

Pooling layer will 
reduce the number 
of tokens.

● We can reduce the number of tokens by merging them together.

Feedforward 
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SpAtten: Efficient Sparse Attention Architecture 
with Cascade Token and Head Pruning

● Cascade token pruning removes redundant tokens and corresponding entire Q K V vectors 
according to the cumulative token importance scores computed from attention prob.

● Cascade head pruning removes unimportant heads and corresponding chunks in all Q K V 
vectors according to the cumulative head important scores computed from attention out.
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SpAtten: Efficient Sparse Attention Architecture 
with Cascade Token and Head Pruning

● For each input, the summation of each 
columns indicates the importance of 
this token, we can remove the 
unimportant tokens accordingly.

● Similarly, we can compute the 
importance of each heads.
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SpAtten: Efficient Sparse Attention Architecture 
with Cascade Token and Head Pruning

● This paper also proposed novel 
architecture to perform top-k extraction 
with high parallelism.
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EdgeBert

Tambe, Thierry, et al. "Edgebert: Sentence-level energy optimizations for latency-aware multi-task nlp inference." 
MICRO-54: 54th Annual IEEE/ACM International Symposium on Microarchitecture. 2021.

● EdgeBERT is a novel algorithm-hardware codesign approach to enable latency-bound NLP workloads on 
resource-constrained embedded devices.

● EdgeBERT dynamically tunes frequency and voltage settings to optimize the trade-off between accuracy, latency, 
and energy consumption.
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Early Exit Mechanism
● EdgeBERT employs entropy-based early exit predication in order to perform dynamic 

voltage-frequency scaling (DVFS), at a sentence granularity, for minimal energy consumption while 
adhering to a prescribed target latency.

● During Inference, a confidence score is computed at each 
exit point, if greater than a predefined threshold, then the 
output is computed locally, leading to a faster inference.

● The confidence score is defined as:

Teerapittayanon, Surat, Bradley McDanel, and Hsiang-Tsung Kung. "Branchynet: 
Fast inference via early exiting from deep neural networks." 2016 23rd 
international conference on pattern recognition (ICPR). IEEE, 2016.
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Other Tricks for Efficiency

● Pruning and Quantization techniques are also adopted.
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Latency Aware Inference
● The entropy result of the first layer is sent to a trained 

classifier (LUT-based) to predict which following 
encoder layer should early exit.

● The voltage and frequency is scaled down to proper 
energy-optimal setting for the rest of encoder layers 
while meeting the latency target for each sentence.
 

● This scheme produces a quadratic reduction in the 
accelerator power consumption.

● To realize fast per-sentence DVFS, the on-chip DVFS 
system is developed and integrated within EdgeBERT
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OliVe: Accelerating LLMs via Hardware-friendly 
Outlier-Victim Pair Quantization

Guo, Cong, et al. "Olive: Accelerating large language models via hardware-friendly outlier-victim pair quantization." 
Proceedings of the 50th Annual International Symposium on Computer Architecture. 2023.

● Recent studies show when the model size exceeds a threshold (e.g., 6 billion), the model 
performance is vulnerable to only a tiny fraction (< 0.1%) of outliers, whose values are much 
more significant than normal values.

● Olive adopts a hybrid quantization scheme and handles outlier values locally using a separate 
quantization scheme.
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Outlier within LLMs
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Radford, Alec, et al. "Learning transferable visual models from natural language supervision." International conference 
on machine learning. PMLR, 2021.
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Types of Outlier
● Massive Activation:

○ For an activation matrix A, an massive activation is an element Aij within it 
that satisfies:

○ Aij > η✕mean(|A|)
○ Aij > γ
○ η=300, γ=50

● Channelwise Outlier:
○ mean(Ai) > η✕std(A) +mean(|A|)
○ std(Ai) < β
○ η=3, β=0.6
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OliVe: Accelerating LLMs via Hardware-friendly 
Outlier-Victim Pair Quantization

● In this work, we aim to design an 
architecture to handle outliers in a 
localized way with high hardware 
efficiency. Post quantization training 
is adopted.

● To better quantize the outlier, one 
number near the outlier are 
sacrificed and set to 0, then two set 
of bits are used to encode the 
outlier.
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Presentations
● Efficient Memory Management for Large Language Model Serving with 

PagedAttention (Xiwen Min & Ziyun Cheng)

● Cnvlutin: Ineffectual-Neuron-Free Deep Neural Network Computing (Jishnu 
Warrier & Ishaan Shivhare)

https://docs.google.com/presentation/d/1M60sZjjV2_ZRfgCzO1ML6DUXHaVc2tMZpaQLyiQ0O98/edit?usp=sharing
https://docs.google.com/presentation/d/1M60sZjjV2_ZRfgCzO1ML6DUXHaVc2tMZpaQLyiQ0O98/edit?usp=sharing
https://docs.google.com/presentation/d/1z-mhZn8_CCxO2WKhGdbkZ7FzXj3-7SBt2kvhj_75tFM/edit?slide=id.g34c6fe205a6_0_198#slide=id.g34c6fe205a6_0_198

