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Lecture 10:
Transformer & LLM Accelerators



Notes

e Midterm grade will post tonight
e Meeting with the project teams next week
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Recap

Convolutional operation conversion
Hardware architecture of CNN accelerator
Systolic array

Popular CNN accelerator design
o SpAtten

o EdgeBert

o Olive
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Topics

Matrix Multiplication with Transposition
Hardware design for Nonlinear Blocks
System optimization of LLMs

Popular transformer accelerator design
o SpAtten

o EdgeBert

o Olive
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Self-Attention Block

Given input x, the first step in calculating self-attention is to create
three vectors from each of the input x’, denoted as: Query (Q), Key
(K), Value (V).

o (BLE) x (ExE) —» (BxLxE)
The second step in calculating self-attention. This will compute the
attention score between each pair of input tokens.

o QKT—(B, LxE) = (BExL)— (B, LxL)
Scale and normalize the score using softmax.

o  Softmax(QKT) — (B,LxL)
Multiply each value vector by the softmax score.

o  Softmax(QKT) » V

o (B,LxL) = (B,LxE)— (B,LxE)
Pass the result to the linear layer, sum with the input.
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Operations Other than Multiplications

e Transposition

e Nonlinear operations
o Softmax
o LayerNorm
o GelLU
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Breakdown on Computational Cost

Latency Breakdown e Matmul still contributes to majority
mmmMatmul EEENormalization B Softmax mmm Others of the overall |atency_
e Nonlinear operations are not
negligible.

e Also other operations (e.g.,
transposition) also contributes to a
great portion of the overall latency.

GPT2 OPT
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Matrix Multiplication
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e The large matrix operands are first partitioned into tiles that can fit the
size of the compute core.

NYU SAI LAB




Matrix Multiplication

1 1

. ) . 9]

Systolic | v, 15| vy, Systolic | v IS

Array = Array c

tod - 1 :
AOO BOO A01 B10

e The large matrix operands are partitioned into tiles that match the compute core's
capacity, after which multiplication and accumulation are executed on a per-tile basis.
e However, sometimes the transposition operations are also required — QKT
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In-Place Matrix Transposition

e In-place matrix transposition refers to the process of transposing a matrix directly within
its existing memory space, requiring only a minimal amount of extra storage.

[ade:>abcdefgh
efgh
- memory
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b ——> |lal|le|b|f|lc|g|[d]|h
C9 memory
-dh—
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In-Place Matrix Transposition

memory

Logics
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read

write

U

memory

(b,c,e) — (e,b,c)

EIRIBl [els[a[n] % "o

Need to read multiple entries from
the memory, permute them and
write them back.

This operation should be performed
efficiently with minimal memory
access cost.

n



In-Place Matrix Transposition

e The search for optimal swapping patterns that minimize permutations is a

Step 1 Step 2

well-established problem in mathematics.
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Norman Brenner, "Algorithm 467: matrix transposition in place," ACM Transactions on Mathematical
Software 16 (11), p. 692-694 (1973). doi:10.1145/355611.362542
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Topics

Matrix Multiplication with Transposition
Hardware design for Nonlinear Blocks
System optimization of LLMs

Popular transformer accelerator design
o SpAtten

o EdgeBert

o Olive
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Implementation of Nonlinear Operations: Softmax

e Softmax operations are heavily adopted in the transformer.
g
Sy = — Fori=1,2:++ ;N
j=N-1 ..
Xig €7

e For positive z with INT representation, we can approximate the values
of e? using the following derivations:

¢? = 9% logee _ qu+v logye ~ 1.0111,

zlogge =z +(z2 >>2)+ (2 >>3)+ (2 >> 4)

e To compute 2"V, we can perform shift and multiplication:
gZ = Uty 2“(1 +0/2) u and v are the integer and fractional part of the

NYU SAl LAB exponent, v/2 is the mantissa, u is the exponent
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Taylor Approximation

e ATaylor series is a series expansion of a function about a point. A

one-dimensional Taylor series is an expansion of a real function f(x)
about a point x=a is given by:

1" (a)( _iP /‘;’ P d i E)

fx)=f(a)+[f (a)(x—a)+

n!

e For small v, e' can be approximated as:

v v
eV%1+§ 2"%1-&-5 log(l+ ) ~ x

U 8 I L Xia, Tianhua, and Sai Qian Zhang. "Softmax Acceleration with Adaptive Numeric Format for both Training and Inference."
N Y A AB arXiv preprint arXiv:2311.13290 (2023).

x—-a)" +....



Taylor Approximation

e ATaylor series is a series expansion of a function about a point. A
one-dimensional Taylor series is an expansion of a real function f(x)
about a point x=a is given by:

————————————————————————— crr (») *(n)
f((l)(_)7 /3 Gi—a) + L@

------------------------- 3! n!

e For small v, e' can be approximated as:

v v
eV%1+§ 2"%1-!-5 log(l+ ) ~ x

U 8 I L Xia, Tianhua, and Sai Qian Zhang. "Softmax Acceleration with Adaptive Numeric Format for both Training and Inference."
N Y A AB arXiv preprint arXiv:2311.13290 (2023).

x—-a)" +....
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Division

e To implement division operation with FP format, we can always apply
the following derivations:

a _ Zea(l i ma)/z"b(l g mb) _ zea—eb+logg(1+ma)—logg(1+mb)

b
~ 9€a—€b+Mag—mp -, 2% (] 4 Mg —2'_ mb)
SHIFT LEFT
e For INT division, we can also S |an_1|iL Py S g e
implement the hardware divisor. AOCOMILATOR 14 QUoTIENT
<}:
n+1 bit < ADD/SUBTRACT

NYU SAI LAB j\ |jo [t o]

DIVISOR M

17



Implementation of Nonlinear Operations:

LayerNorm
e For the input vector z, the normalization operation requires to

computes its mean and variance, then the intermediate results are
scaled with some predefined values.

_ Z— Uz . e i(zi—pz)?
s=a——= 4 pp = S UZ:\/Z(N;)

e Most of the operations are supported, the inverse of square root can be
computed as follows:

1
y = logy(y) = —; logy(x)
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Implementation of Nonlinear Operations:

LayerNorm

e Most of the operations are supported, the inverse of square root can be
computed as follows:

1
Y= 5 log,(y) = —Elogz(x)
=291 + M,/2Y) log,x = E, — Q + log,(1 + M,/2%)
~E, —Q+ M,/2F + o,

e Qs the bias, Ex and Mx are the binary representations of the
exponent and mantissa, respectively.
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Table Lookup

e For other complicated nonlinear functions, we can always precompute
the results and store them in the buffer.

Memory

M

[ ]
/\ 0123 o
0.456 |1
y = F(x) 0.789 |2
019 |3

.

e However, this will inevitably lead to additional memory access cost and
footprint.
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HAAN: LayerNorm Accelerator

Layer Normalization: S 00

v
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LLM block index

e Exploit correlation in input statistics across layers.
Skip redundant computations and estimate normalization statistics.

N YU SAI LAB arXiv preprint arXiv:2502.11832 (2025).

From layer 41-61

linearity

/

Peng, Tianfan, et al. "HAAN: A Holistic Approach for Accelerating Normalization Operations in Large Language Models."
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HAAN: LayerNorm Accelerator

Layer Normalization:

Computing the inverse of
standard deviation of costly

LLM block

<
EJ%

N
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U

block 1

block 3

o~
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o
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1P 1M1 isps

1 | = = 7 timati
—| = d,! af! og ! estimation

a9 g3

Log-linear

ISDs

e Exploit correlation in input statistics across layers.
Skip redundant computations and estimate normalization statistics.
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Predictor
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HAAN: LayerNorm Accelerator

Al = Normalization| 51
I > Unit
nput
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F|xed In D

e Overall Architecture

o Input Statistics Calculator.

o Square Root Inverter.

o Normalization Unit.
e Input Statistics Calculator

o Compute mean and variance.

o Parallel processing to reduce latency.
e Square Root Inverter

o Approximate inverse square root

using Newton's method.

o  Support for layer skipping.
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PICACHU

\
Linear & ,/ >< A e.g. fml- .. -fadd =L ﬁ Shared [\~~~
SOﬁ% 4 ey Softmax,LayerNorm, E-call @cgra_GELUe— E Buffer .
Y 7 FFN 1 GeLU, ... ’ Pattern Matching ‘ 'eall SOFTMAX & sl
J & Offloading ycall @cgra. i
Decoder Normalization) To MLIR Dialect 1call @cgra_LAYERNORM ;+‘“|
Lo 1 ¥ ¢ | B

-
e { D=« :
g A \ [ 1 |
GELU ’ O vector op O scalar op ‘ 5
»O—>

Jayng-s|qnoq
w9 Bujweasns

Attention 1 LLVM IR Loop Transformation Ctrl Signal

Decoder ||\ ;
. Unroll & Vectorize of Tile 1
,—A.— \ 1 Algorithm for operatiqns :-ftr:n-(;)- ':' igg:{',j; -=-5i-"}" -; DFG Manipulation Precision-Aware FUs,
Embeddmg FP version / INT version =1 : I Generate &
Algorithm e.g.;=2'-(1 +ln2f+..): =~ Tune&Map PICACHU CGRA

x Algorithm e.0i-2 (1 112/ + ).

PICACHU is a plug-in coarse-grained reconfigurable accelerator tailored to efficiently
handle nonlinear operations by using custom algorithms and a dedicated compiler

toolchain.

Qin, Jiajun, et al. "PICACHU: Plug-In CGRA Handling Upcoming Nonlinear Operations in LLMs." Proceedings of the 30th

NYU ‘SAI LAB ACM International Conference on Architectural Support for Programming Languages and Operating Systems, Volume 2. 24
2025.




PICACHU

Categories | Nonlinear Operations | Mathematical Operator | Representative LLMs
S ft AV _exp(x,») e exp(xi-u) :
o Thexp(x;) T ZK exp(xj-u) Division, Exponential All
U = maxX;= X;
Activation ReLU(x) := max(0, x) | Maximum OPT [145], T5 [90]
Function
GeLU(x) := 0.5x (1 + Tanh(y/2/7(x + 0.044715x3)) | Division, Exponential | CET [14 8% 87, 85], BLOOM [57], Falcon [53],
Tanh(x) = (exp(x) + exp(—x)) /(exp(x) — exp(—x)) g PanGu-a [144], Jurassic-1 [64], Gopher [89]
| GeGLU(x) := GeLU(xW +b) & (xV +¢) ‘ Division, Exponential LaMDA [110], GLM-130B [143]
SwiGLU(x) := SiLU(xW + b) & (xV +c); Division. Exponential PalLM [17], LLaMA [113, 114], Qwen [7],
SiLU(x) = x - sigmoid(x) = x - m P DeepSeek [11], InternLM [15], Yi [135]
LayerNorm(x;) := =2 GPT [14, 84, 87, 8], BLOOM [57], BERT [20],
Inverted Square Root
A ailsates p=3 36 x,0= - S (xi—p)?+e 1 OPT [145], PanGu-a [144], Jurassic-1 [64]
Function LLaMA [113, 114], T5 [90], Mistral [43],
RMSNorm(x;) := ;0 = /& T (x)2 +e Inverted Square Root @wen [,[7] DeepS]eek [[1 1]] Gaphis {89}
Positional RoPE (xj("") = (’;2"'1 ‘;if((:g)) ;)’:f:;é:g; ) ; e GPTNeo-20B [13], LLaMA [113, 114], PaLM [17],
: 2i 2i-1 i 2i i ; i
Embedding 6; = 10000-26-D/d j ¢ [1,2, ... d/2] GLM-130B [143], Qwen [7], DeepSeek [11]

e All nonlinear operations within LLM can be broken down into various mathematical operators.

Qin, Jiajun, et al. "PICACHU: Plug-In CGRA Handling Upcoming Nonlinear Operations in LLMs." Proceedings of the 30th ACM ¢
International Conference on Architectural Support for Programming Languages and Operating Systems, Volume 2. 2025.
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Topics

Matrix Multiplication
Hardware design for Nonlinear Blocks
System optimization of LLMs

Popular transformer accelerator design
o SpAtten

o EdgeBert

o Olive
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Flashattention

Attention on GPT-2

e Most of the operations are bottlenecked by 15+ ] Matmul
memory speed. Dropout
e Anew attention algorithm that computes exact 7 4
attention with far fewer memory accesses. %10- Softrngx
e The main goal is to avoid reading and writing the E 2 o
attention matrix to and from memory. >4 Mask  Kernel
e Flashattention enables to compute the softmax E .
reduction without access to the whole input. 0.- ] matmul
PyTorch FlashAttention

NYU SAI LAB

7.6x reduction on GPU latency

Dao, Tri, et al. "Flashattention: Fast and memory-efficient exact attention with io-awareness." Advances in Neural Information o

Processing Systems 35 (2022): 16344-16359.



Flashattention

A

e Due to the heavy involvement of attention
mechanism, transformers are
memory-bound rather than compute
bound.

e Kernel fusion: if there are multiple
operations applied to the same input, the
input can be loaded once from HBM,

Bandwidth-bound I Compute-bound  INStead of multiple times for each

| operation.
I

>
Arithmetic Intensity (FLOP: lByte)

Peak FLOP/s

Attainable Flop/s
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Flashattention
Round 1
Step 1
- Compute
‘4) CoFr)e Step 3 e
Step 2
Round 1
Step 1
Qg | v
Step 2

NYU SAI LAB

Y = S(QKT)xV

Round 2
Step 4
{»‘ Compute
« Core Step 6
Step 5
Round 2
{»‘ Compute
< Core
Stop 3 Step 4

Mem

Mem

S
©
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Flashattention
Round 1
QK
~ | C t
L) Oggﬁ: € QKT Mem
Round 3
S(QK™), V
~ | C t
Ly Og;?: € v Mem
NYU SAI LAB

Y = S(QK") %V

Round 2
QKT

-~ Compute

‘4) Core S(QKT) Mem

e The computation of QK" must be all

finished before computing softmax.

e This will lead to multiple rounds of

memaory access.

e~i
§; = SFN-T_ fori=1,2:+++ ;N
j=0 €

30



: Y = S(QKN)xV
Flashattention (QK")
Round 1
Q1,K1 Q1,K2
\:‘ Co(r:T(w)pr):te QiKiT Mem \:‘ Co(r:T(w)pr):te QiKT Mem

e In practice, this operation will be executed in tiles.
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Flashattention

Algorithm 0 Standard Attention Implementation

Require: Matrices Q, K,V € RV*4 in HBM.
1: Load Q,K by blocks from HBM, compute S = QKT, write S to HBM.
2: Read S from HBM, compute P = softmax(S), write P to HBM.

3: Load P and V by blocks from HBM, compute O = PV, write O to HBM.
4: Return O.

e Softmax and linear layers are computed separately.

e Flashattention splits the inputs Q, K, V into tiles, then compute the attention
output with respect to those blocks.

NYU SAI LAB
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Flashattention

e Softmax operation can be performed as:
miE)y =max x5 @)=, @]
l

fn) = Zf(x),-, softmax(x) := %

1

e \We can fuse the softmax with the linear layer by doing follows:
m(x) = m([x(l) x(Q)]) = max(m(xV), m(x?))

f(x) — [em(x(l))_m(x)f(x(l)) em(x(Q))—m(x)f(x(Q))

f(x) = f( [x(l) x(2)]) - em(x(l))—m()()[(x(l)) +em(x(2))—m(x)£(x(2)) Softma,x(x) -

NYU SAI LAB

J1%)
{(x)
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Flashattention
Round 1

Q1K1TT Q1,K1,V1,Y1

S(Q1K1Y) Compute
Yi=mxY1+n%x S(Q1K1")% Vi  Core m.n.Y1
Update m,n
g Fori=12 N
§; = —— ori=1;2;:44;
iy e

NYU SAI LAB

S(QKN %V

Mem
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Flashattention
Round 2

Q1K2TT Q1,K2,V2,Y>2

S(Q1K2') Compute
Yo=muxY2+n% S(Q1K2")% Ve  Core m.n.Y2
Update m,n
e*t Fori=12 N
5 = — ori=1,2 4y
T ¢

NYU SAI LAB

S(QKN %V

Mem
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Flashattention

NYU SAI LAB

Algorithm 1 FLASHATTENTION

Require: Matrices Q, K,V € RV¥*4 in HBM, on-chip SRAM of size M.
1: Set block sizes B, —[ ] B —mln(|—4d] d).
2: Initialize O = (0)yxa € RNXd =)y €eRN, m=(-c0)y € RN in HBM.

3: Divide Q into 7, = “;V—,] blocks Q1,...,Qr, of size B, X d each, and divide K,V in to 7. = [g—(] blocks

Ki,...,Kz. and Vi,...,Vr,, of size B, X d each.

4: Divide O into T, blocks O;,...,Or, of size B, X d each, divide ¢ into T, blocks ¢;,. ..

divide m into T, blocks my,...,mr, of size B, each.
5. for 1 < j <T. do
6: Load K;,V; from HBM to on-chip SRAM.
7. forl1<i<T, do
8: Load Q;, O;, ¢;, m; from HBM to on-chip SRAM.
9: On chip, compute §;; = QinT. € RBBc,
10: On chip, compute m;; = rowmax(S;;) € R, f’,-j = exp(S;; — m;;) € RB>*Be (pointwise), 67,-1-
rowsum(f’,,) e R5,
11:  On chip, compute m}*” = max(m;, fi;;) € RPr, £V = e™ """ {; + ¢~ ™™ (;; € RPr.
12: ‘Write O; « diag(¢2*%)~!(diag(£)e™ ™™™ 0, + e~ ""P;;V ;) to HBM. '
13: “Write ¢; — =, _r;z: Cm o HBM. T T T T
14: end for
15: end for

16: Return O.

,tr, of size B, each,
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Paged Attention

Block 1
Block 2
Query forth
vector
Block 0

Key and value vectors

years ago our fathers
brought | forth
Four score and seven

Request
A

Block 0

Block 1

Block 2

Block 3

Prompt: “Four score and seven years ago our”
Outputs: “fathers” — “brought” — ...

Logical KV blocks

® [©) [0} ® Block Table
Four | score and | seven -
|Physical block| #filled
® @ 0] @ number
years ago our | fathers o7 on
% \R* ®1 @3 _, 49
rought (W o ron

Block 0

Block 1

Block 2

Block 3

Block 4

Block 5

Block 6

Block 7

Block 8

Physical KV blocks
(on GPU DRAM)

[©)
years

[©]
ago

our

(?athers

%rought

G>Four

[©)
score

e and

(0]
seven

e An LLM serving system that achieves (1) near-zero waste in KV cache memory and (2)

flexible sharing of KV cache within and across requests to further reduce memory usage.

NYU SAI LAB Kwon, Woosuk, et al. "Efficient memory management for large language model serving with paged attention." Proceedings

of the 29th Symposium on Operating Systems Principles. 2023.




Topics

Matrix Multiplication
Hardware design for Nonlinear Blocks
System optimization of LLMs

Popular transformer accelerator design
o SpAtten

o EdgeBert

o Olive
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SpAtten: Efficient Sparse Attention Architecture
with Cascade Token and Head Pruning

As a visual treat, the film is almost perfect.

11 Tokens | 12 Heads e Not all the tokens nor heads are
[ BERT Layer 1 (100% Computation & Memory Access) ) necessary to produce the final results.
) e SpAtten is an efficient
G algorithm-architecture co-design that
| 5 Tokens ¥ 10 Heads leverages token sparsity, head sparsity,
Cascade pruning [ Layer 2 (38%) d tizati rtuniti t d
of unimportant I and quantization opportunities to reduce
tokens h& ';Ieads film perfect the attention computation and memory
on the fly. 2 Tokens | 8 Heads
: access.
accuracy. ¢

Sentiment Classification: Positive v

Wang, Hanrui, Zhekai Zhang, and Song Han. "Spatten: Efficient sparse attention architecture with cascade token and

NYU ‘SAI LAB head pruning." 2021 IEEE International Symposium on High-Performance Computer Architecture (HPCA). IEEE, 2021. 39




Token Merging

Linear

Transformer block

Block N

Feedforward
layer (FFN)

Self-attention
layer (SA)

S

Block 2

Block 1

Positional
encoding

Embedding

Pooling layer will
reduce the number

of tokens.

“IThis| show

1s||lgreat]”’

U

This show

is great

e \We can reduce the number of tokens by merging them together.

NYU SAI LAB

Bolya, Daniel, et al. "Token merging: Your vit but faster." arXiv preprint arXiv:2210.09461 (2022).
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SpAtten: Efficient Sparse Attention Architecture
with Cascade Token and Head Pruning

R
QKV FC

<— 10 tokens —

8 heads

QKV §
Attention )

attention_prob
attention_out X

Accumulate
Importance Scores
Cumulative toKen and head
importance sc, pres

(o)

Tokens and heabs to be pruned:

FFN
——
QKV FG

Cascade token pruning:

Prune 2nd token

N

Cascade head pruning:
Prune 3" head

QKV §
Attention J

attention_prob
attention_out

Accumulate
Importance Scores
Cumulative toKen and head
importance scgres

top-k

FFN a
_—
QKV FC

Cascade head pruning:

Cascade token pruning:  Prune another head:

Tokens and heabs to be pruned:

Prune another 2 tokens:
7™ and 9™ tokens

7th head

e (Cascade token pruning removes redundant tokens and corresponding entire Q KV vectors
according to the cumulative token importance scores computed from attention prob.

e Cascade head pruning removes unimportant heads and corresponding chunks in all Q KV
vectors according to the cumulative head important scores computed from attention out.

NYU SAI LAB
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SpAtten: Efficient Sparse Attention Architecture
with Cascade Token and Head Pruning

Key
Each row is a set of o Q ()
: e c
attention probability - g Q2 g % i O cao g_E_
distribution (sumsto 1), =205 > 02 c 2 ESSSE

e Similarly, we can compute the
importance of each heads.

Sum each columnmore! 1 !
and accumulateto  fynd & ® |
previous thani i !
cumulative token  thed & !
importance scores  gim !

to get current
importance scores

be:1L;ar:':g;fL;‘ ' r] B e For each.inp.ut, the summation of each
thei i | B EnEE I columns indicates the importance of
el s im BRI |2 this token, we can remove the
vy 51 1 1 E unimportant tokens accordingly.
lot ] : g

0]41700{3 12117 1:00/4 1:8 06 1.9 1.4 03 0'9 0i4 «——
¥ ¥ . 4 £

h 4
i Tokens with small cumulative importance scores are pruned away |

NYU SAI LAB ,.2




SpAtten: Efficient Sparse Attention Architecture
with Cascade Token and Head Pruning

N JFIFO x 32 Q%Ki Sotimax H AR PTob XV 4
§ z :III:I:IE % (Gl Key SRAM (196KB) @ ) WZIVER Value SRAM (196KB) @ ‘g example:[0.6, 0.1, 0.5, 1.2, 0.6], k=3 B STATE_RUN
& % - —
N 5 [~ m ™| E == g Inputs
= S| Dm |8 14 = Local S
g ||£| =™ (¢ T i o [HOSIIP s ] :
= el - runing e B = S
= © S sl P > > = § 3 o) : EIEONIE FIFO_R
s ) 3 @en Tree accumuiation. nommatization Top-k > | Q Quick = A
O <> = < i ﬁ =
© ® #4120 ecior x matrix i weighted L ANNNNNN Selec NNNN\N ANNNNN
= o @ Fttéfition_prob kth largest{0.6 | %
z 8[© JFiIFo x 32 {sentence Tongihizb e b nuy €o_jin 16 16
T 3l & o (3) Token Importance Attention l % =
@ <l @ |_OC |5 QKV 'ﬁ:z"i‘;sd  Score Accumulator Probabilities Score Accumulator
[T e € ¥ é
2 o Fetcher (3) Top-k for Cascade Need| (g)Progressive Quantization| | @ Top-k for Cascade | B Y select prOt
L2C | Address E;malgedl <’ Token Pruning | LSle = Need LSB? Head Pruning z ‘ i i
ey ids
Fig. 8. SpAtten Architecture Overview. Modules on the critical path (6,7,8,10,11) are fully pipelined to maximize the throughput. [0,0,0,1.2,0] [@ @ @ . J [@ @ @ o J
[0.6,0,0, 1.2, 0.6] } }
. Zero Eliminator ( Zero Eliminator J w ( Zero Eliminator J
e This paper also proposed novel T ¥ ; %

®_.| : Inum_eq |_pivot

architecture to perform top-k extraction A
with high parallelism.
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EdgeBert

EdgeBERT Processing Unit
Accalerator System Bit-mask Decoder 0 Datapath: nZ FP Vector MACs |} fo g wlS2on v
Input / Weight] InputWeight exy mant exp) mant  expl mant
Mask 0 Buffer 0
(16 KB) (128 KB) 7 ® ® X B ®
— —| mat_in0 =] <) s
Read and Decode ‘ﬂj (n*n) _'D_' B :
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e EdgeBERT is a novel algorithm-hardware codesign approach to enable latency-bound NLP workloads on
resource-constrained embedded devices.

e EdgeBERT dynamically tunes frequency and voltage settings to optimize the trade-off between accuracy, latency,
and energy consumption.

U Tambe, Thierry, et al. "Edgebert: Sentence-level energy optimizations for latency-aware multi-task nlp inference."
NY SAI LAB MICRO-54: 54th Annual IEEE/ACM International Symposium on Microarchitecture. 2021. 44




Early Exit Mechanism

e EdgeBERT employs entropy-based early exit predication in order to perform dynamic

voltage-frequency scaling (DVFS), at a sentence granularity, for minimal energy consumption while

adhering to a prescribed target latency.

e During Inference, a confidence score is computed at each
exit point, if greater than a predefined threshold, then the
output is computed locally, leading to a faster inference.

e The confidence score is defined as: entropy(y) = Z Y. logy..

NYU SAI LAB

ceC

Teerapittayanon, Surat, Bradley McDanel, and Hsiang-Tsung Kung. "Branchynet:

Fast inference via early exiting from deep neural networks." 2076 23rd
international conference on pattern recognition (ICPR). |IEEE, 2016.
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I— Conv 3x3 = Conv 3x3

Conv 5x5

45



Other Tricks for Efficiency
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e Pruning and Quantization techniques are also adopted.
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Latency Aware Inference

Algorithm 2: EdgeBERT latency-aware inference. Compu- e The entropy result of the first layer is sent to a trained

tations exit at the predicted exit layer or earlier. classifier (LUT-based) to predict which following
Input: T := per-sentence latency target, ET := entropy target enCOder Iayer ShOUId ea rly eX|t
for input sentence i = 1 ton do
O e 01V DDioms Fremax) e The voltage and frequency is scaled down to proper
i ey < Brthen energy-optimal setting for the rest of encoder layers
else while meeting the latency target for each sentence.

Lpredict = LUT(entropy(z1), ET)
VDDopt. Freqopt = DVFS(Lpredict~ T) i i . .
- e This scheme produces a quadratic reduction in the

for encoder layer | = 2 to Lpredict do .
21 = f(x: 0V DDopt. Freqopr) accelerator power consumption.
if entropy(z;) < Et then

| exitinference

Bm e To realize fast per-sentence DVFS, the on-chip DVFS
- system is developed and integrated within EdgeBERT
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OliVe: Accelerating LLMs via Hardware-friendly
Outlier-Victim Pair Quantization

1
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e Recent studies show when the model size exceeds a threshold (e.g., 6 billion), the model
performance is vulnerable to only a tiny fraction (< 0.1%) of outliers, whose values are much
more significant than normal values.

e Olive adopts a hybrid quantization scheme and handles outlier values locally using a separate
guantization scheme.

NYU SAI LAB

Guo, Cong, et al. "Olive: Accelerating large language models via hardware-friendly outlier-victim pair quantization."
Proceedings of the 50th Annual International Symposium on Computer Architecture. 2023.
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Outlier within LLMs
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on machine learning. PMLR, 2021.
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Radford, Alec, et al. "Learning transferable visual models from natural language supervision." International conference

v
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Types of Outlier

e Massive Activation:
o For an activation matrix A, an massive activation is an element Aij within it
that satisfies:
o Aij>nXmean(|A|) y6-Layer3
o Aij>y
o n=300, y=50
e Channelwise Outlier:
o mean(Ai) > nXstd(A) +mean(|A|)
o std(Ai)<p
o n=3, p=0.6
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OliVe: Accelerating LLMs via Hardware-friendly
Outlier-Victim Pair Quantization
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Presentations

e Efficient Memory Management for Large Language Model Serving with
PagedAttention (Xiwen Min & Ziyun Cheng)

e Cnvlutin: Ineffectual-Neuron-Free Deep Neural Network Computing (Jishnu
Warrier & Ishaan Shivhare)
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